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The purpose of this report is to introduce the engineer to the area of stochastic 
differential equations, and to point out the mathematical techniques and pitfalls in 
this area. Topics discussed include continuous-time Markov processes, the Fokker- 
Planck-Kolmogorov equations, the Ito and Stratonovich stochastic calculi, and the 
problem of modeling physical systems. 
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I .  I N T R O D U C T I O N  

This paper  discusses certain mathematical problems which arise in attempting to 
model a stochastic dynamic system by means of a set nonlinear ordinary differential 
equations with white-noise excitation. This approach has been advocated in engineer- 
ing literature at various times over the past ten years. The appeal of  this approach is 
that it is the natural extension to stochastic systems of the state-space approach to 
deterministic systems which has met so much success in optimal-control theory. 
Furthermore, the state vector in such a model turns out to be a vector Markov 
process, for which a substantial mathematical theory exists; in particular, there is 
the theory of the Kolmogorov or Fokker-Planck partial differential equation. In 
addition, as one would expect of  a state-space approach, this method is especially 
suited to the study of  the transient behavior of the stochastic system, with steady-state, 
or, more precisely, stationary behavior obtained as a limiting case. 
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The engineering literature tends to give one the impression that the major 
difficulties associated with this approach are computational. Although it is not 
denied that the computational difficulties are large, it is the main point of this paper 
to show that a fundamental difficulty may arise at an earlier phase of the analysis, 
namely, when the mathematical model itself is chosen. In a sense, this difficulty is not 
computational, but conceptual, i.e., there may be a basic divergence between the 
implications of the mathematical model and the facts of physical reality. 

This difficulty arises from the properties of the heuristic mathematical idealization 
known as white noise, or its rigorous counterpart, Brownian motion, which is 
heuristically the time integral of white noise. The peculiar implications of the 
Brownian-motion stochastic process puzzled physicists of an earlier era, leading them 
to adopt a stochastic process with more "physical" properties, the Ornstein- 
Uhlenbeck stochastic process. 

Mathematically, the trouble arises when one attempts to apply the usual rules 
of differential and integral calculus to functions of time which are actually sample 
functions of a stochastic process. The result has been that something of a controversy 
has appeared in recent literature concerning two possible ways of extending ordinary 
calculus to stochastic functions: the so-called Stratonovich calculus, in which the 
usual rules continue to apply, and the so-called Ito calculus, in which the rules are 
changed. Although this subject has been discussed in several papers in the last two 
or three years, reading some of these papers can leave one more bewildered than 
before one started. 

The aim of this report to show, by means of examples which have been chosen 
to be as lucid as possible, the reasons for this divergence. Further, we will suggest 
an approach to the problems of mathematical modeling, analysis, and computation 
which seems to have the qualities of being both mathematically rigorous and consistent 
with physical reality. 

2. T H E  E N G I N E E R I N G  M O D E L  

Typically, the dynamic equations of motions that arise in the analysis of engineer- 
ing systems are a statement of Newton's law of motion, F = ma,  possibly augmented 
by the inclusion of known frictional or dissipative forces. Although the direct 
application of F = m a  yields second-order differential equations, it is well known 
that it is always possible, by adding more variables, to convert these to a set of coupled, 
first-order, and often nonlinear, differential equations of the form 

~(t) = fix(t), t) (1) 

Here x and f are n-vectors. The vector x(t) is called the state of the system at time t. 
If  now an engineer wishes to modify Eq. (1) to try to take account of random 

forces in the environment, a natural way to proceed is to write 

~(t) = f(x(t), t) + G(x(t), t) v(t) (2) 
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Here v(t) is an m-vector, representing the random force at time t, and G(x(t), t) is 
an n • m matrix. It is allowed to be a function of x and t to take into account the 
possibility that the influence of the noise may depend on the state of the system. 

The function v(t) is a random process, i.e., for each fixed t, the value of  the 
function v(t) is a random variable. In the absence of any special knowledge about 
the nature of the random force, a commonly made assumption is that v(t) is a so-called 
Gaussian white-noise random process. This means that for each fixed t, the random 
variable has a Gaussian distribution with zero mean and infinite variance. Further- 
more, for any two times tl and t2, with tl :~ t2, the two random variables v(tl) and 
v(G) are completely independent of each other. 

Let E denote expectation, i.e., averaging across the statistical ensemble. Let a 
prime denote the transpose of a vector or a matrix. Since v(t) is a column vector, 
v'(t) is a row vector. Mathematically, white noise is characterized by the conditions 

E{v(t)} ~ 0; E{v(tO v'(t~)} = C(h)  ~(tl - -  t2) (3) 

Here C(t~) is an m • m matrix, called the white-noise covariance matrix, which 
expresses how the components of the vector v(h) are correlated among themselves. 
It is meaningful to speak of such correlation even though each component has infinite 
variance. 

In the case of stationary white noise, the matrix C is constant, independent of 
time. Strictly, it is only in this case that the name "white" can be justified, because 
only in this case can one define a power spectral density function. In this case, the 
power spectral density function is constant, independent of frequency, analogous 
to the spectrum of the white light. 

White noise is much the same kind of mathematical pathology in the theory of 
random processes that the Dirac delta-function is in the theory of deterministic 
functions. 

As is by now well appreciated, so long as one does only linear operations on a 
delta-function, it is usually possible to interpret the result in a meaningful way 
However, one runs into trouble in trying to do nonlinear things to a delta-function. 
The square or the logarithm of a delta-function is meaningless, for example. 

A similar situation exists in the case of white noise. If  the differential equation (2) 
is linear, i.e., of the form 

~(t)  = A( t )  x(t) + B(t )  v(t) (4) 

then it turns out that there is no difficulty in interpreting what is meant by a solution 
of this differential equation. As a function of t, x(t) turns out to be a Gaussian random 
process, and there is no controversy about how to compute the mean and the 
covariance of this process. The process x(t) is much better behaved than v(t), e.g., 
none of the components of x(t) has infinite variance. 

However, when the differential equation (2) is nonlinear, a problem of inter- 
pretation arises. One might at first think that the nonlinear equation (2) is simply 
meaningless, as in the case of the square of a delta-function. However, this is not the 
case. It turns out that there are two distinct, meaningful ways of interpreting Eq. (2) 
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which appear in contemporary literature, and which are called, repsectively, the Ito 
and the Stratonovich interpretations. 

As stated in the introduction, this report will explore this Ito-Stratonovich 
divergence. Each interpretation will be explained, as well as the reason for the diver- 
gence. The two interpretations will be shown to be equivalent, in the sense that it is 
possible to pass from the results obtained under one interpretation to the results for 
the other interpretation via a transformation formula. Finally, the problems of real- 
world modeling and computation will be discussed. 

3. T H E  F O K K E R - P L A N C K  E G I U A T I O N  

Before discussing this divergence and the subtleties of the stochastic calculus, per- 
haps it will be well to review the area of the theory in which there is no controversy. For 
ease of exposition, henceforth we will consider onyl scalar-valued random processes, 
although the theory holds in the vector-valued case also. An introduction to the 
theory of the Fokker-Planck equation is given by Wang and Uhlenbeck m and 
Barrett, (~) who also give further references. This theory will not be developed here, 
but the major results will be stated. 

Consider the scalar stochastic differential equation 

~z(t) = f(x(t) ,  t) 4- g(t) v(t) (5) 

Here v(t) is Gaussian white noise, with 

E{~(t)} = 0, E{v(t) v(s)} - -  ~(t - -  s) (6) 

We assume that I g(t)l > 0 for all t. We will also assume thatf(x ,  t) and g(t) are at 
least piecewise continuous functions of t, that f is at least once differentiable with 
respect to x, and that f obeys the following conditions: there exists Kz, /s < Go 
such that If(x,  t)l ~/<1 +/(21 x I for all t and all x. 

Aside from the change from vector-valued functions to scalar-valued functions, 
the major difference between Eq. (2) and Eq. (5) is that in Eq. (5), the function g(t) 
must be a function of t only, and not a function of x. That is, the white noise enters 
additively; it is not multiplied by any functions of the solution of the differential 
equation. 

Under this restriction, the Ito and the Stratonovich interpretations of the solution 
of the differential equation coincide. The divergence only arises when the white noise 
is multiplied by a function of the solution of the equation. 

In the earlier literature, m the stochastic differential Eq. (5) is called a Langevin 
equation. In the more-mathematical modern literature, Eq. (5) is rewritten in a more- 
rigorous manner. In order to avoid the mathematical pathology associated with white 
noise, its integral, the so-called Wiener or Brownian motion process w(t) is introduced: 

f 
~ 

w ( t ) =  v(~)dr (7) 
0 
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The process w(t) can be defined independently of v(t), merely by stating that it is 
Gaussian and that 

E{w(t)} = 0; E{w(t) w(s)} ---- min{t, s} (8) 

By "multiplying through by dt," Eq. (5) is recast in the form 

dx(t) = f(x(t), t) at -k- g(t) dw(t) (9) 

or, by integrating once, in the form of a stochastic integral equation 

x(t) = x(O) 4- fo f(x(r),  r) dr 4- fo g(-r) dw('r) (lo) 

The integral on the right, f~o g(~')dw(-r), being an integral with respect to a Wiener 
process, is a new kind of integral, a so-called stochastic integral. However, so long 
as the function g(t) is restricted as mentioned above, i.e., that it is a nonrandom 
function of t, then the Ito and Stratonovich interpretations of  this integral agree. 
It may be defined, e.g., as the limit in probability of a sequence of sums of the form 

g(h)[w(h+l) "- w(h)] 
i = 0  

where 0 = to < tl < t~ -.- < t~ = t. So far, there is no problem; the usual rules of  
calculus continue to apply to this integral. 

When the engineer tells the mathematician that what he really means by a solution 
to the Langevin equation (5) is a solution to the integral equation (10), then the 
mathematician is happy, because he can prove existence and uniqueness of  solutions 
to Eq. (10) with probability 1. Furthermore, the mathematician's solution to Eq. (10) 
turns out to have the sort of properties that one intuitively expects that solutions 
to Eq. (5) might have, so the situation is good. 

Since for each t, x(t) is a random variable, it has a probability distribution 
associated with it. Furthermore, this distribution will be smooth enough so that it 
can be described by a probability density function p(~:, t). Here, the meaning of  this 
function is that 

p(s e, t)d~: = Prob{~: ~< x(t) < ~ 4- d~} (11) 

The variable s e is merely a parameter in the density function. It is not the same as 
the value of the process x(t). In the density function p(~, t), the two variables ~ and t 
are independent variables. 

It turns out to be of great interest to study conditional densities, where we 
condition on the known value of  the process at an earlier time. Therefore, define 
p(~, t [ 7, s) for s < t by 

p(s e, t I 7, s) d~: = Prob{s e ~ x(t) < ~ 4- d~ I x(s) = 7} (12) 
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The function p(~, t ] ~, s) will be a function of all four independent parameters ~, 
~/, t, and s. When t, ~/, and s are held fixed, it is probability density function of ~, e.g., 
p(~:, t i ~7, s) >~ 0 and 

f 
r 

-~  p f f ,  t i ~, s) d~ = 1 (13) 

Suppose we tried conditioning on several past events. Let ta < t2 < " " <  t , .  
Consider the probability 

Prob{~ ~< x(tn) < ~ -k d~ I x(ti)  = ~?i, i = 1, 2,..., n - -  1} 

It turns out that for a process x( t )  obtained as the solution to a stochastic integral 
equation Of the form of Eq. (10), this conditional probability is merely equal to 
p(~:, tn I r~-a, t~-a) d(. 
Written mathematically, what we are saying is 

Prob{~ ~< x(t,~) < ~ + d~ l x ( h )  = W~ , i = 1, 2,..., n - -  1} 

= Prob(s r ~< x(t.~) < ~ q- d~lx(t ,~_z) -= ~%_z} 

= p ( f ,  t~ I ~7,-1, t,_~) d~ (14) 

Any process x ( t ) f o r  which Eq. (14) holds for every integer n, for every 
choice of t l ,  t.z ,..., t,~, provided only that tz < t~ < ... < t,-1 < t~, is called 
a Markov process. Stated in words, the defining property of a Markov process 
is that the single most recently observed value of the process contains as much 
information about the future evolution of the process as does knowledge of 
the entire past history of the process up to and including the most recently observed 
value. 

The conditional probability density function p(~, t ] ~7, s) plays a fundamental 
role in the study of continuous Markov processes. This function is customarily called 
the transition density for the process. The transition density p(~, t I ~/, s) may be 
obtained by solving the forward Fokker-Planck equation (also called the forward 
Kolmogorov equation) 

@(~, t! ~, s) 
~t 

1 ~2p(~, t l ~7, s) 

--or < ~: < q-oo, t > s  

(15) 

with the boundary conditions 

lira p(~, t] ~, s) = $(~: -- n); lim p(s ~, t [ ~/, s) = 0 ~16) 
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The transition density may be obtained equally well by solving the backward 
backward Fokker-Planck or Kolmogorov equation 

1 2 e~p(# , t ln ,  s) ~P(~:'~st } 7, s) - f(7, s) bP(se'~Tt 1 ~, s) + 2 g (t) 872 (17) 

--oo < ~/ < ~-oo, s < 2 t  

with the boundary conditions 

lira p(~:, t J 7, s) = S(~e _ 7); 
s-~ t 

lim p(s e, t! 7, s) = 0 (18) 

Equation (15) is a partial differential equation for p considered as a function of 
the independent variables s e and t. The variables 7 and s are merely parameters which 
enter through the boundary conditions (16). On the other hand, Eq. (17) is a partial 
differential equation for p as a function of the independent variables ~q and s. Here s e 
and t are merely parameters which enter through the boundary conditions (18). The 
coefficient func t ionsfand  g are the functions defined in Eqs. (5) and (6). 

From an engineering standpoint, the situation may be summarized by saying that 
a complete probabilistic analysis of the properties of a stochastic dynamic system 
described by Eq. (5) may be made by finding the transition density p(~:, t I 7, s) as a 
solution to one of the Fokker-Planck equations (if it satisfies one, it necessarily 
satisfies the other). This statement is accurate, provided one is careful what he does 
in such an analysis. The next sections will show what it means to be careful. 

4. A N  APPARENT P A R A D O X  

Let us consider the Wiener process introduced in Eq. (7). The preceding theory 
applies to this process, since by setting x(0) ~ 0, f = 0, g = 1, Eq. (10) becomes 

f 

x(t) = f dw(-d (19) 
0 

i.e., x( t )  = w(t). In order to make our point, it will suffice to consider only the forward 
equation (15), and to consider its solution only for the special case of s = 0, 7 ~ 0 
in Eq. (16). 

Denote this solution by q(s e, t). Thus, 

q(~, t) d~: = Prob{s c ~< x(t)  < s e + d~: [ x(O) ----- O} (20) 

where now x(t)  is a Wiener process. 
It is well known that q(~:, t) is given by 

q(~:, t) = (2re)z/~ exp [-- -~-] (21) 
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It is easily verified that this function obeys the forward equation 

~q(~, t)/et = �89 ~q(~, t ) /~  2 (22) 

and satisfies the boundary condition 

lim q(s t) = 6(s (23) 
t-+O 

Now, suppose the Wiener process is passed through a memoryless nonlinear 
device to produce a new process z(t). Since the device is memoryless, the process z(t) 
will still be Markov, and the probability density for it will obey a Fokker-Planck 
equation. Specifically, suppose that 

z(t) = sinh[x(t)] (24) 
Define 

p(~, t) d~ = Prob{~ ~< z(t) < ~ + d~ I z(0) = 0} (25) 

By the rule for change of variables in probability densities, 

d~ e=sinh-a: (26) p(~., t) = q(~, t) -~ 

Now, (didO)sinh-:~ = (1 -? ~2):/2, so 

p(~, t) = [ 1 q- ~= ]:/2 (sinh-: ~)~ 
t ~ l  exp[  2t ] (27) 

Either by making the change of independent variable ~ = sinh-:~ in Eq. (22) and 
using Eq. (26), or by direct differentiation of Eq. (27), one finds that the Fokker-  
Planck equation satisfied by p(~, t) is 

--St~P(~' t) ~ [~ 21 ~ 2 -- p(~, t)] § ~ [(1 + ~2)p(~, t)l (28) 

According to the theory given by Doob, t3) this is the forward equation corre- 
sponding to the stochastic differential equation 

dz(t) = �89 dt + [1 + z~(t)] 1/~ dw(t) (29) 

This resembles the stochastic differential equation (9) discussed in the previous 
section. However, in regard to Eq. (9), it was specifically stated that the coefficient 
g(t) which multiplies the noise had to be a nonrandom function of t only. In Eq. (29), 
the coefficient of  the noise, namely [I + z2(t)] :/~, is a function of z(t). 

Now, if we simply compute dz(t) from Eq. (24) using the chain rule of ordinary 
calculus, we find 

0 
dz(t) - ~ sinh x }~(0=s,nh-:.rm)~ dx(t) = cosh x }~(~)=s~nh-'rm)j dx(t) 

- [1 -}- sinh ~ x] 1/~ I~=s~nb-ir,(t)l dx(t) 

= [1 + z2(t)l dx(t) (30) 
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Since, in the present case, x(t) = w(t), this may be rewritten 

dz( t ) -~  [1 + &(t)] a/2 dw(t) 01) 

The stochastic differential equations (29) and (31) differ by the term �89 dt. The 
question is, which is the correct stochastic differential equation for generating the 
process z(t) from a Wiener process? 

Ito and Doob would say Eq. (29) is the correct equation. Stratonovich would 
say that Eq. (31) is the correct equation. Let us pinpoint the exact issue of disagreement 
by first stating the facts on which there is agreement: 

1. The Wiener process is a well-defined process. Its probability density, given 
that the process starts at zero at time zero, is correctly given by Eq. (21), and this 
function satisfies Eqs. (22) and (23). 

2. The process z(t) defined by Eq. (24) is a well-defined process. Its density 
function, defined in Eq. (25), is correctly given by Eq. (27), and this function satisfies 
Eq. (28). Thus, in particular, both Stratonovich and Ito would agree that Eq. (28) 
is the correct Fokker-Planck equation for the z(t) process defined by Eq. (24). 

3. It is agreed that if we integrate Eq. (31) according to the rules of ordinary 
calculus, we do get z(t) ~- sinh[w(t)] as the solution, while if we integrate Eq. (31) 
according to the lto calculus, we do not get this as the solution. 

4. Ito and Stratonovich would both agree that if we integrate Eq. (29) according 
to the rules of Ito calculus, we do get z(t) = sinh[w(t)] as the solution, while if we 
integrate Eq. (31) according to ordinary calculus, we do not get this as a solution. 

Therefore, the situation is that the one unambiguous way to specify a Markov 
process mathematically is to specify its transition density, or, equivalently, the 
Fokker-Planck equation obeyed by the transition density. The divergence arises 
when one wishes to generate the specified process as a solution to a stochastic differ- 
ential equation forced by the differential of a Wiener process. The divergence boils 
down to two different ways of associating the coefficients in the Fokker-Planck 
equation with the coefficients in the stochastic differential equation, and, respectively, 
two ways of integrating this stochastic equation. 

Each way is consistent within itself, as we have seen. Starting from the process 
z(t) defined by the Fokker-Planck equation (28), the use of Stratonovich rules asso- 
ciates the stochastic differential equation (31) with Eq. (28). Integrating Eq. (31) by 
by the Stratonovich rules yields z(t) = sinh[w(t)]. 

On the other hand, the use of Ito rules will associate the stochastic differential 
equation (29) with the Fokker-Planck equation (28). However, integrating Eq. (29) 
by the Ito rules again yields z(t) = sinh[w(t)]. Further, Ito would say that the com- 
putation of the differential dz(t) in Eq. (30) is incorrect; if this computation is done 
by Ito rules, then Eq. (29) results. However, Stratonovich would say that Eq. (30) 
is a perfectly valid computation. 

At first glance, it might seem academic to worry about this divergence between 
Ito rules and Stratonovich rules. Each set of rules is consistent within itself. If the 

822I~12-, 
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same set of rules is consistently applied throughout the whole computation, both 
methods yields the same result. 

The mathematician discusses Markov process by starting with the transition 
density for the process. He is able to associate a Fokker-Planck equation in an 
unambiguous way with this transition density. When he finds that he has two possible 
ways of modeling the process as the solution to a stochastic differential equation, 
he will choose the way which has the most mathematical elegance in its internal 
structure, and which is capable of the greatest generalization. Considered from this 
standpoint, the Ito calculus is the "right" choice. Indeed, the procedure just described 
is precisely, the one followed by Doob in his book. 13J 

However, the question is not so simple for the engineer. He cannot resolve the 
issue on the basis of mathematical elegance alone. The engineer does not start with 
the transition density. As discussed in the earlier sections, the engineer starts with a 
differential equation which he has obtained on the basis of known physical laws. 
He then adds a white-noise forcing term to get a stochastic model. If  the coefficient 
of the noise is itself random, then there are two possible ways of interpreting the 
equation, leading to two different Fokker-Planck equations and two different processes. 
The question is, which process does one "really" get in the physical world ? Which 
kind of calculus does nature use ? 

The answer to this question hinges on whether white noise "really" exists, or whether 
the concept of white noise is only a convenient approximation which we use in place 
of a more-detailed knowledge of the properties of the noise process. The true situation 
is certainly the latter, since noise with a truly flat power density spectrum out to 
infinite frequency would carry infinite total power. However, this then implies that 
there is really no such thing as a Markov process either, and the whole theory of the 
Fokker-Planck equation goes down the drain. 

Therefore, the whole theory of white noise, stochastic differential equation, 
Markov processes, and the Fokker-Planck equation must be approached from the 
standpoint of an approximate model rather than an exact model of physical reality. 
It is, of course, possible to use nonwhite noise in the model, but now one is faced with 
the problem of specifying the power density spectrum of the noise, which is usually 
completely unknown at high frequencies, even though it can be measured as flat 
at low frequencies. Furthermore, use of a nonflat high-frequency spectrum complicates 
the computations tremendously. 

Once one realizes the kind of approximation that is being made, it turns out that 
it is possible to use either the Ito or the Stratonovich rules and obtain equally accurate 
results, provided that one is careful in setting up the mathematical model and that 
one is aware of the subtleties involved. 

The paradox of obtaining two different stochastic processes as solutions to the 
same stochastic differential equation thus turns out to arise from the pathological 
nature of white noise. This paradox can be avoided by treating this pathology with 
propre respect~ In the following sections, we will examine the situation in more detail. 
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5. T H E  I T O  C A L C U L U S  

In order to introduce the Ito calculus, let us begin by examining the Wiener 
process w(t) more carefully. Let A t be some very small, but not infinitesimal, increment 
of time. Define 

Aw(t) = w(t § At) -- w(t) (32) 

For fixed t and At, w(t + At) and w(t) are both Gaussian random variables, so Aw(t) 
is also a Gaussian random variable. 

Let q(s e, t l 7, s) be the transition density for the Wiener process, i.e., 

q(~, t l 7, s) d( = Prob{~ ~ w(t) < ~ + dfl  w(s) = '7} (33) 

By the definition of the Wiener process, this density is given by 

1 [ ( t  - -  ~/)z ] q(~:, t l s) (34) ~1' = [27r(t -- s)]X/2 exp [ 2(t -- s) J 

With somewhat of an abuse of notation, define the conditional probability density 

p,~w(A~ ] ~) d(A~) = Prob{At ~< dw(t) < As + d(d~) I w(t) = t} (35) 

Since we are conditioning on the fixed event {w(t) = ~}, observe that 

Prob{At ~< Aw(t) < At  + d(Af) I w(t) = t} 
= Prob{~ + A~ <~ w(t) + Aw(t) < ~ + At  + d(A() ] w(t) = ~} 
= Prob{~: + A~ <~ w(t + At) < t + A~ + d(A~)lw(t) = t} (36) 

It follows from Eqs. (33)-(36) that 

p~(A~ ] ~) = q(~ + A~, t + At] ~, t) 
1 ( + A~) 

---- {27r[(t + At) t]}l/~ exp t - -  2 [ ( t  4- A t )  - -  t ]  , 

1 (A~:)2 
=-- (2rr Zlt)l/---T exp [ 2At ] = p~(A~) (37) 

In the last line of Eq. (37) we have written paw(At) to denote the unconditional 
probability density for the random variable Zlw(t), i.e., 

p~w(A~) d(A~) = Prob{A~: ~< Aw(t) < A~ § d(A~:)} (38) 

The important point  is that 

p~o(A~ I ~) = p,~w(A~) (39) 

i.e., the distribution of the increment Aw(t) is independent of w(t), the state of the 
process at time t. This is not generally true of random processes, or even of Mark0v 
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processes. The Wiener process w(t) belongs to a special class of processes known as 
processes with independent increments. 

From Eqs. (37) and (38), we see that the random variable Aw(t) defined in Eq. (32) 
is Gaussian with mean zero and variance At. The fact that E{(Aw) 2} isfirst order in At 
is what causes the peculiarities of the Ito stochastic calculus. 

Let F be any smooth, real-valued, nonlinear function of a real variable. Consider 
F(w(t -? At)) where w(t) continues to denote the Wiener process. By Taylor series 
and Eq. (32), 

F(w(t + At)) = F(w(t) + Aw(t)) 

= F(w(t)) + F'(w(t)) Aw(t) -t- �89 ~ + "'" (40) 

Using the distribution of Aw(t), we have 

E{(Aw) ~} = O, k odd 
(41) 

= 1.3.5 ... ( k -  1)(/It)k/~, k even 

Use the notation O(At) to denote a remainder consisting only of terms of order 
(/it) 2 and higher. Suppose now we tried to define 

d F(w(t)) -- lira F(w(t + / I t ) )  -- F(w(t)) (42) 
~t-~o At 

From Eqs. (40) and (41), it follows that 

1 I E -~ F(w(t)) = l i m  �89 t + 0(,lt) 
~t-~o At (43) 

= 1 E{F"(w(t))} 

On the other hand, if one computer the total differential dF(w(t)) using the 
chain rule of ordinary calculus, one has 

dF(w(t)) = F'(w(t)) dw(t) (44) 

By passing from an increment Aw(t) to a differential dw(t), it follows from Eq. (39) 
that dw(t) is independent of w(t). Therefore, 

E{dr(w(t))} = E{F'(w(t)) dw(t)} 
= E{F'(w(t))} e{dw(t)} = 0 (45) 

since E{dw(t)} = 0 by Eq. (41). Now, Eq. (45) would imply that 

E l d  F(w(t)) I = 0  (46) 

in contradiction to Eq. (43). 
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The point is that because of the fact that E{(Aw) ~} = At, the definition of  the 
derivative (42) no longer leads to the usual rules of calculus. Ito was the first to show 
how the rules of calculus should be modified to handle this phenomenon. First of all, 
instead of computing the derivative as in (42), one should compute the differential 
dF(t) because the differential dw(t) can be rigorously interpreted, whereas the derivative 
dw(t)/dt can not. 

As given by Skorokhod/4~ the Ito rule for the stochastic differential in the present 
case is 

dtF(w(t)) = F'(w(t)) dw(t) -k �89 dt (47) 

where now de means Ito differential. Note that this rule is now consistent with Doob's  
treatment of the Fokker-Planek equation. Let us apply Eq. (47) in the special case 
when F(w(t)) = sinh[w(t)]. Now, F'(w) = cosh w, F"(w) = sinh w, so Eq. (47) says 

all sinh[w(t)] = cosh w(t) dw(t) + �89 sinh w(t) dt (48) 

Let us write z = sinh w. Then, cosh w = [1 -t- z~] z/2, so Eq. (48) can be rewritten as 

dzz(t) = �89 dt + [1 -k z~(t)] z/z dw(t) (49) 

which is the same as Eq. (29). Thus, the Ito rule Eq. (47) for the total differential is 
consistent with the Fokker-Planck equation (28). 

Since the rule for computing total differentials has now been changed from 
Eq. (44) to Eq. (47), we must expect a corresponding change in the rule for integration. 
Let us write (/) J" when an integral is to be understood in the Ito sense, and continue 
to write just f for ordinary integrals. 

We wish to preserve the fundamental property of  calculus, that the integral can 
be interpreted as an antiderivative. Therefore, we require that 

d,F(w(t)) = F(w(tO) -- F(w(to)) (50) (I) 
, i  

tO 

Applying this to Eq. (47) yields 

f l l  d,F(w(t)) = F(w( t z ) ) -  F(w(to)) (i, 

~1 F'(w(t)) dw(t) + = (I) f , .  

This may be rewritten as 

,1 gl f l  I F"(w(t)) dt (52) (I) f ,o F'(w(t)) dw(t) = F(w(tz)) -- F(w(to)) -- 

Now, let g(x) be any once-differentiable function. Define 

f~ G(x) = g (0d~  (53) 
0 
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Then, using Eq. (52) with F replaced by G, 

si'0 (I) f ,o g(w(t)) aw(t) = (I) G'(w(t)) aw(t) 

= a ( w ( 0 )  - -  a ( w ( t . ) )  - -  

w(t) 1 tl 
= J,(to) g(~) d~ -- -2 fro g'(w(t)) dt (54) 

In Eq. (54), the notation w,1) Sw(t0) g(~)d~ means compute .[g(~)d~ as an ordinary 
integral, treating ~ as a deterministic dummy variable of integration, and then evaluate 
between the random limits w(q) and W(to). This, incidentally, is essentially what 
Stratonovich has in mind in his definition of the stochastic integral. 

Let (S) j" denote the Stratonovich integral. Then, in the present context, 

h w(q) 
(~) f ,o~(W(O) ~w(o = f o .  ~(~) ~( (55) 

Therefore, Eq. (54) can be rewritten 

Jil  JZI (I) g(w(t)) dw(t) = (S) g(w(t)) dw(t) -- ~ g'(w(t)) dt (56) 

which is a special case of the formula given by Stratonovich (5) for the connection 
between Ito integrals and Stratonovich integrals. 

The Ito calculus has some surprising consequences. For example, let g(w(t)) = 
w(t) in Eq. (56). By the notation g'(w(t)) we mean, of course, 

g'(w(t)) = dg(~)d~ e=w(~) (57) 

so that in the present case g'(w(t)) = 1. Now, 

(58) 

so, using Eqs. (55) and (56), we obtain 

tz g ,  

(1) [ w(t) dw(t) = �89 -- �89 -- �89 -- to) (59) 
to 

an example which is also given by Doob. 
The presence of the �89 -- to) term in Eq. (59) can be made more plausible by 

the following considerations. Let us consider 

Ji'o =- J;i  60> 
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As in Eq. (45), we have 

E{w(t) dw(t)} = E{w(t)} E{dw(t)} = 0 (61) 

since the increment dw(t) is understood to be independent of w(t). Therefore, we 
conclude 

w(t) dw(t) 0 (62) E (I) f,o = 

Now, recall that the Wiener process was defined such that w(0) = 0. Thus, by 
Eq. (21), we have that 

E(w2(q)} = q ; E~w~(to)} = to (63) 

Taking the expected value of both sides of Eq. (59) now gives 

w(t) dw(t) = ~E{w~(tO} -- �89 - -  l ( q  to) E (I)) 'o  

= � 8 9  - -  �89 - -  � 89  - -  to )  = 0 ( 6 4 )  

in agreement with Eq. (62). Thus, the � 8 9  I - -  t0) can be viewed as a correction term 
which ensures that Eq. (62) holds. 

However, these considerations also imply that for the Stratonovich integral, 

w(t) dw(t) = �89 to) ~ 0 E (S) % (65) 

Thus, for the Stratonovich integral, it cannot be true that dw(t) is independent of w(t), 
for we have just seen that this independence is what makes the expected value of the 
Ito integral always zero. 

in fact, this is precisely the case. Stratonovich interpretes the differential dw(t) 
in such a way that it is not independent of w(t). The Ito calculus is based on the fact 
that the increment Aw(t) defined in Eq. (32) is independent of w(t), and has mean 
zero and variance At. 

In contrast, Stratonovich works with a "Stratonovich increment" defined as 

AsW(t) = w(t § �89 At) -- w(t -- �89 At) (66) 

This increment still has mean zero and variance At, but it is not independent ofw(t). 
We will examine the Stratonovich calculus in more detail in the next section. 

This report is written in such a way as to be (we hope) pedagogically palatable 
to engineers. Consequently, our treatment of stochastic differential equations and 
stochastic calculus differs drastically from the rigorous mathematical treatment given 
by Doob (3~ and Skorokhod. ~4) Rather than carefully stating and proving theorems, 
we are trying to convey the basic ideas involved by considering only special cases 
and examining illustrative examples. 
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So far, we have discussed the Ito calculus by following the approach historically 
used in presenting ordinary calculus to students for the first time. Namely, we 
we introduced the derivative first, as the sort of limit given in Eq. (42). The integral 
was then introduced as an antiderivative. 

In the modern, rigorous approach to calculus, which is usually presented to 
students only after their intuition has been sharpened, the integral is defined directly 
from first principles. The Riemann integral is defined as a limit of Riemann sums, 
and the Lebesgue integral is defined by use of measure theory. 

Similarly, in a rigorous approach to stochastic calculus, the Ito integral is 
defined first, as a stochastic limit of Riemann-type sums. The Ito differential formula 
Eq. (47) is then derived as a consequence of this integral. 

Let us sketch briefly the definition of the Ito integral as a limit of sums.Letw(t) 
be a Wiener process. Let z(t) be any random process having the properties that for 
all t, z(t) and [w(r) -- w(t)] are independent for all r > t, and that 

f r  Z2(t) dt < o~ (67) 
0 

with probability one. Note that for r <~ t, z(t) and [w(r) -- w(t)] may be dependent. 
L e t 0 =  t o < t a  < t 2 < " "  < t ~ =  T. Let 

A,  = max I t i - -  ti-lb (68) 

Choose any sequence of partitions to, q ..... t~ such that lim~+~o d,~ = 0. The object 
is to define the Ito integral 

T 

= (I) f z(t) dw(t) (69) J 
0 

I~ = i z(t~_~)[w(tk)- w(t~_a)l (70) 
k = l  

Define 

Note that the integrand z(t~_z) is always evaluated at the beginning of the interval 
[tk-z, t~] over which the increment [w(t~) -- w(tk_l)] is taken. Therefore, z(t~_~) and 
[w(tk) -- w(&_l)] are always independent. Consequently, 

E{I~} = ~ E{z(tk_l)} E{w(t~) -- w(t~_l)} = 0 
k = l  

(71) 

It is now possible to prove that sequence of random variables I~ converges in 
probability to some limiting random variable J. This limit is called the Ito integral 
It  has the property that E{J} = O. 

Note that the class of random processes z(t) which may be used as integrands 
here is very broad. It is only required that z(t) be square-integrable over the interval 
of integration and that the present value of z(t) is always independent of all future 
increments of w(t). In fact, there is not even any reason why the integrating process 
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w(t) has to be a Wiener process. Doob ~3) and Skorokhod ~4) this in detail. The point 
is that the definition of the stochastic integral given by Ito is really quite general, 
much more so than our heuristic derivation of  Eq. (56) would indicate. 

6. T H E  S T R A T O N O V I C H  C A L C U L U S  

In the previous section, we asserted that a derivative defined as a limit of the form 
of  Eq. (42) is consistent with an integral defined as a limit of sums of the form of  
Eq. (70), and we gave some examples to make this assertion plausible. The resulting 
stochastic calculus is called the Ito calculus. By examples such as Eqs. (48) and (59), 
it was illustrated that the rules of the Ito calculus differ from the usual rules of  ordinary 
calculus. 

Stratonovich ~5) proposed a definition of the stochastic integral under rather 
restrictive conditions which leads to a stochastic calculus whose rules are the same 
as ordinary calculus. Basically, what Stratonovich did was to show that the formula 
(56) could be made rigorous. Thus, with the Ito integral on the left-hand side of 
Eq. (56) already well-defined, the Stratonovich integral on the right-hand side of  
Eq. (56) becomes well-defined. 

Therefore, Stratonovich did not give a fundamental definition of a new stochastic 
integral, but only defined the new integral in terms of the already existing Ito integral. 
Furthermore, the new integral is not defined for forms as general as Eq. (69). It is 
only defined for the special case of Eq. (69) in which z(t) is of the form 

z(t) = g(w(t), t) (72) 

where g(x, t) is a nonrandom function of the two arguments x, t. Consequently, the 
Ito integral remains both more fundamental and more general than the Stratonovich 
integral. 

It is tempting to suppose that a fundamental definition of the Stratonovich 
integral could be given, in analogy with Eq. (70), by taking a sequence of sums of the 
form 

1~=1 2 [w(t~) - w( t~_O]  (73) 

Unfortunately, such a sequence of sums cannot be shown to converge, in general, 
even in such a weak sense as convergence in probability. The Stratonovich integral 
is not versatile enough to be suited for many application for which the Ito integral is 
suited. 

The Stratonovich integral is just versatile enough to be suited to the integration 
of stochastic differential equations. Consider the following generalization of Eq. (9): 

dx(t) = f(x(t) ,  t) dt q- g(x(t), t) dw(t) (74) 

The functions f(x, t) and g(x, t) are assumed to be jointly continuous in x and t, 
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once-differentiable with respect to x, and to satisfy the following condition: there 
exist constants Kz, /(2 < oe such that 

If(x, t)] ~ K1 +/(21 x l and I g(x, t)l <~ K1 + K21 x[ 

for all t and all x. 
By rewriting Eq. (74) as an integral equation, one obtains 

x(t) = x(O) q- f f (x ( r ) ,  r) dr q- f g(x('r), r)  dw(r) 
o o 

(75) 

The stochastic integral on the right has as its integrand g(x(r), ~-), rather than 
g(w(.r), ~') as is required by Eq. (72). However, by giving a multidimensional definition 
of his integral, Stratonovich was able to show how the integral in Eq. (75) could be 
recast in the desired form. Therefore, it is possible to say that the stochastic integral 
on the right-hand side of Eq. (75) can be interpreted as a Stratonovich integral. That 

T 
is, Stratonovich integrals of the form fo g(x(t), t)dw(t) can be defined, provided 
dx(t) and dw(t) are connected by a stochastic differential equation such as Eq. (74). 
This is apparently the most general situation for which the Stratonovich integral can 
be defined. 

It is now possible to give an existence and uniqueness proof of solutions to the 
stochastic integral equation (75) when the stochastic integral is interpreted in the 
Stratonovich sense, in analogy to the type of proof using Picard iteration that Doob 
gives for the case of an Ito integral. 

The Stratonovich and the Ito solutions of Eq. (75) will of course be different, 
because of the divergence between the two integrals indicated by Eq. (56). Call xl(t) 
the Ito solution and Xs(t) the Stratonovich solution. Explicitly, we have 

xs(t) : xl(O) Yo f(xs(r), dT+ (1) f[ T)dw(T) (76) 

Although xx(t) and Xs(t) are two different processes, they both still turn out to be 
Markov processes. Call &(~:, t I ~7, s) the transition density associated with xj(t), and 
ps((, t ! 7, s) the transition density associated with Xs(t). 

AS given by Doob, pi(~:, t [ ~?, s) obeys, respectively, the forward and backward 
Kolmogorov equations 

ep,(~:, t t n, s) e 1 e~ 
cot - c9~ [f (~ '  t) &(~:, t I ~, s)] -t- ~ ~ [g(~, t) p1(~:, t [ ~7, s)] 

~px(~:, t I ~, s)  ~pz(~:, t I ~, s )  1 2 ~%(~,  t I n, s)  

(78) 

(79) 
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On the other hand, Stratonovich shows that ps(~, t I *7, s) obeys, respectively, 
the forward and backward equations 

8p~(~, t 17, s) 
at 

8 
87g [f(s e, t) Ps(~, t ] ~, s)] 

1 t) [g(~:, t )ps(~,  t 1.7, + ~  i~g(~:, ~8 s)]l (8o) 

8ps(~, t[ *7, s) 8ps(~, t I *7, s) 
as =/( .7 '  s) 87 1 8 [8(*7, s) 8p~(~:, t j *7, @ ~ g('q, s) W 8*7 s)] 

(81) 

We saw earlier that if Eq. (29) is interpreted in the Ito sense, then the appropriate 
forward Kolmogorov equation is (28). If  one now uses the Stratonovich rule Eq. (80) 
for the forward equation, one finds that if Eq. (31) is interpreted in the Stratonovich 
sense, then the appropriate forward equation is again Eq. (28). This is as it should be, 
since the Ito solutionof Eq. (29) and the Stratonovich solution of Eq. (31) are the 
same process, namely, 

z(t) = sinh[w(t)] (82) 

as we saw earlier. 
This would suggest that it ought to be possible to obtain the Ito solution xi(t) 

of Eq. (76) also as the solution of some Stratonovich equation, and vice versa. Indeed, 
this turns out to be the case. It was shown (5,8) that x1(t) also obeys 

x,(t) = xl(O) @ f'o [f(x,(r), r) -- �89 r) gz(xl(r), r)] dr 

r) dw(r) (83) 
d0 

where 

gl(x, t) = eg(x, t)/ex (84) 

Similarly, the solution Xs(t) of Eq. (77) also obeys 

xs(0 = xs(0) + fl r / +  r/ l(xs(r), r)j dr 

(85) 

Therefore, although the Ito integral is more fundamental and more general than 
the Stratonovich integral, it turns out that when we restrict our attention to stochastic 
differential equations of the form of Eq. (74), the two definitions of  the stochastic 
integral lead to two different, but interchangeable, theories. 
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7. M O D E L I N G  T H E  R E A L  W O R L D  

We say in the last section that the stochastic differential equation (74)is ambiguous. 
The ambiguity may be removed by writing the equation in integral form with the 
type of integral definitely indicated, as in Eqs. (76) and (77). 

We now return to the situation discussed at the beginning of this report. Suppose 
an engineer has a deterministic model of a dynamic system of the form of Eq. (1). 
Suppose that he now wants to include the effects of stochastic forces in the environ- 
ment, and that physical reasoning suggests that a plausible stochastic model is Eq. (2). 
Which way should he interpret this equation, Ito or Stratonovich ? Which kind of 
stochastic integration does Nature herfself perform ? 

In order to answer this question, it must be kept clearly in mind exactly what is 
the purpose of a mathematical model. Presumably, we have in front of us a physical 
dynamic system, i.e., a "black box," whose output is a random process. For simplicity, 
suppose this random process is scalar-valued, and call it y(t). 

In order to take advantage of the theory of Markov processes, one wishes to 
obtain y(t) by means of a state-output relation of the form 

y(t) = h(x(t), t) (86) 

where x(t) is an n-dimensional vector-valued Markov process. The value of n, the 
statistics of the process x(t), and the deterministic function h are to be chosen in 
some suitable way so that the statistical properties of the process y(t) obtained from 
Eq. (86) approximate to an acceptable degree of accuracy the sample statistics of the 
observed output of the black box. 

It will further be convenient to obtain the Markov process x(t) by means of a 
stochastic differential equation of the form of Eq. (2). Once the statistics of the x(t) 
process have been specified, we have seen in the previous sections how the functions 
f and G may be chosen so that either the Ito or the Stratonovich interpretation may 
be used. 

Since the form of the function h in Eq. (86) and the coordinatization of the state 
space are at our disposal, one may be able to make this choice in such a way that the 
matrix G in Eq. (2) is not a function of x(t), i.e., G would be a purely deterministic 
function of time. In this case, it is possible to avoid the Ito-Stratonovich divergence 
altogether, as we have seen. 

The point of view being taken here is that the modeling problem consists of 
trying to make the statistics of the output of the mathematical model agree with the 
statistics of the physically observable output of a given black box. There is no claim 
that Eqs. (2) and (86) "really" portray what is "actually happening" inside the box, 
since the inside of the box is not observable to us. 

This philosophical approach to the problem is generally known as the pheno- 
menological approach, in contrast to what might be called an axiomatic approach. 

If  one adopts this phenomenological approach of working backward from the 
output with the only objective being to match the generated output with the observed 
data, then the choice between the Ito and Stratonovich calculi becomes merely a 
matter of personal preference. On this level, mathematicians will prefer the Ito 
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calculus because of  its elegance and generality, while engineers will prefer the 
Stratonovich calculus because of their familiarity with its rules. 

It seems to the present author that this is perhaps the best resolution of the 
controversy, since it avoids having to answer the question of whether "Nature"  
prefers Ito integrals or Stratonovich integrals. 

Another way of reaching essentially the same conclusion is to realize that true 
white noise cannot exist in the physical world. Any noise process, regardless of  how flat 
its power density spectrum appears at low frequencies, must have a spectrum which 
eventually drops off to zero at sufficiently high frequencies, in order for the total 
power carried by the process to be finite. Physically, the dropping off the spectrum 
may occur because of  quatum-mechanical effects, if for no other reason. White noise 
is reminiscent of  the "ultraviolet catastrophe" which appeared when blackbody 
radiation was treated by classical physics. 

Consequently, as pointed out previously, the concepts of the Wiener process 
and of a Markov process are mathematical idealizations which can only approximate 
physical reality. 

Suppose we have a sequence of continuous-time stochastic processes, of finite 
total power, which become better and better approximations of white noise as one 
passes to the limit. The point has been made (1, 8 ) tha t  the Ito and Stratonovich 
integrals behave differently under passage to the limit. Our point here is that this is 
no cause for concern, provided that one understands what is happening and views it 
appropriately, because Nature herself never passes to the limit. 

For  example, if one wishes to simulate Eq. (2) on a digital computer, since the 
digital computer operates necessarily in discrete time, the simulation output will be a 
discrete-time approximation to the desired continuous-time process. It is known how 
to program the computer so that its output will approximate either the Ito solution 
of  Eq. (2) to any reasonable accuracy. 

The same remarks apply to analog simulation. Now, the analog computer 
operates in continuous time, but since it must necessarily employ a physical noise 
generator, the spectrum of the noise cannot be truly white. This is in contrast to the 
digital computer, where it is possible to obtain true discrete-time white noise. Neverthe- 
less, Kailath ~9) mentioned a way of rigging the analog computer so that it will 
approximate either Ito integration or Stratonovich integration. 

The above remarks still have not answered the question of what an engineer 
should do when he already has a deterministic model of a physical system and wants 
to convert it to a stochastic model. The safest answer is that he should throw away 
the deterministic model, and remodel the whole problem, with the objective being 
to get the statistics of the output of a Monte Carlo computer simulation to agree 
with the statistics of the observed data from the physical system. Any effort less than 
this is an attempt to find a short cut, and may yield an incorrect model. 

As an example of the kind of situation that may occur in modeling, consider the 
planar motion of a particle of  unit mass, subject to no deterministic forces. 

In intertially fixed Cartesian coordinates, the dynamic equations of motion 
[analogous to Eq. (1)] are 

6~(t) = O, ~f(t) = 0 (87) 
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Suppose we introduce flight-path coordinates and write v~ = V cos/3, v~ = V sin ft. 
The flight-path equations of motion are 

P = O, Vr = 0 (88) 

If one integrates both Eq. (87) and Eq. (88), starting from corresponding initial 
conditions, both Eq. (87) and Eq. (88) yield the same straight line for a trajectory. 

Now, consider making the jump from Eq. (1) to Eq. (2). Let n~(t) and n~(t)be 
independent Gaussian white noises, each of unity power density. Equation (87) 
becomes 

(;~(t) = n~(t), r = n~(t) (89) 

In order to write these equations in Ito form, introduce the two Wiener processes 

w~(t) = f n~(.)d,, 
0 

The I toformofEq.  (89) is 

dye(t) = dw~(t), 

f 
~ 

wu(t ) = n~(.r) dr (90) 
0 

dvy(t) = dw~(t) (91) 

and, of course, the velocity vector of the particle is a two-dimensional Wiener process. 
The defining relations for the flight-path coordinates may be written 

V2(t) = v~(t) -k rye(t), fi(t) -= tan-l[v~(t)/v,(t)] (92) 

If one computes total time differentials according to the rules of ordinary calculus, 
one obtains 

V~e V~ dV = -~ dv~ + ~ dvu = cos fl dr, + sin fl dv~ 
(93) 

v~ v~ sin fl , cos fl 

By Eqs. (91) and (93), therefore, the Stratonovich form of the stochastic equation 
of motion in flight path coordinates is 

dV(t)] [ cosfl(t) sinfl(t)][dw~(t)] 
dfl(t) ] = sin fl(t) cos fi(t) (94) 

V(t) V(t) [dwu(t)] 

Now, suppose that one computes the total time differential of Eq. (92) according 
to the rules of the Ito stochastic calculus, or, alternatively, one computes the Ito 
correction term for Eq. (94) according to the rule given by Wong and Zakai. ~s~ 
Either way, the Ito differentail equation corresponding to Eq. (94) is 

- -  cos fl(t) sin fi(t) dw~(t)- 

l = 
[dV(t)dfi(t) Sinv(t)fi(t) COSv(t)fi(t) [t)'dw~'t'_ (95) 
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Thus, the dfl equation is the same in both Ito and Stratonovich forms, but the 
dV equation differs by a term (1/V)dt. 

Let p be the transition density for the (V, 8) process. The forward partial differ- 
ential equation obeyed by this density can be written down from Eq. (95) using the 
rule given by Doob, or it can be written down from Eq. (94) using the rule given by 
Stratonovich. Either way, one finds that the equation is 

#p ~ (1  ) 1 ~p + 1 ~2p 
~- i=-e -W V p + ~ v  - - ~  2v2 ~/~ (96) 

Equation (96) is the equation obeyed by the transition density of a two-dimen- 
sional Wiener process expressed in polar coordinates, as can be verified by starting 
with the diffusion equation in rectangular coordinates and applying the rules for 
change of variables in probability densities. 

Summarizing what we have so far, the stochastic differential equation of motion 
of a particle of unit mass whose velocity vector is a planar Wiener process is given in 
Cartesian coordinates by Eq. (91), in Stratonovich form in flight-path coordinates 
by Eq. (94), and in Ito form in flight-path coordinates by Eq. (95). In Cartesian 
coordinates, the Ito and Stratonovich forms of the equations coincide; in flight-path 
coordinates, they do not coincide. The choice of which one to use is entirely a matter 
of personal preference, because Eqs. (90, (94), and (95) are merely three different, 
but equivalent, ways of describing exactly the same process. 

In Eq. (89), it was implicity assumed that n~(t) and n~(t) are independent of 
v~(t) and v~(t), or, stated more rigorously, in Eq. (91), the increments dye(t) and 
dvu(t) are independent of v~(t) and v~(t). Physically, we have a white-noise force field 
which is fixed in inertial coordinates, through which the particle moves. When the 
situation is viewed in flight-path coordinates, the force on the particle appears to 
be correlated with the flight-path angle/~(t). 

Since the Stratonovich equation (94) can be manipulated according to the rules 
of ordinary calculus, let us reintroduce the white-noise forces n~ and n u and rewrite 
Eq. (94) in engineering fashion as 

[ t~!t) ] [ cos ;3(0 s in/3(0][ ,~(0]  
Vfl(t)J = [--sin fi(t) cos fi(t)J lnu(t)] 

(97) 

of force. 

n JL (t)] [ cos fi(t) sin/3(0] [n~(t)] 
n• = [--sin fl(t) cos fl(t)Jtn~(t)J 

By definition of n~ and n~, 

Fn~(t)]t 

(98) 

(99) 

(lOO) 

Both components of this vector now have the physical dimensions 
Let nit and n• respectively, be the forces parallel and perpendicular to the flight path. 
Thus, 



294 Richard E. Mortensen 

Now, consider 

E ~[n'(t)]t ~ E  IE ,[n,,(t)][/3(0II 
Ln• ! ~ Ln ~(t)l 1 

t[ cos fl(t) sin/3(01 t[n~(t)ll )t 
t Ln~(t)/ 

E t t[nLn• (t)] [n, 09 n_(~-)] /3(t),/~(r)l 

[ cos/3(t) sin/~(t)] E t[n~(t)] [nx(r) n~(~-)] /3(t)fi(~.)t[cos/3('r) --sin/3(~-)] 
- -  L--sin/3(t) cos/3(t)J i Ln~(t)J ~ Lsin/~(r) cos fi(r) J 

,r cosfl(t) sin /~(t)] [1 0] [cos ]3(~-) --sin/30-)] 
= 8( t - -  r l [_sin/3(t  ) cos~(t)JL0 llLsin/~(~') cos/3(r) J 

-- ~(t -- ~-)r cos[/3(t) - fi(r)] sin[/~(t) -- riO)]] (102) 
- -  L--sin[/3(t) - - /3(T) ]  cos[/3(t) -- /70-) ]1 

However, the 8-function is zero except when t = ~-, and when t = r, the matrix 
in the last line in Eq. (102) becomes the identity. Thus, it appears that 

I[.,,(t)lP,,,(~-) 
fLn~(t)J n• J(t)' , tu 1] (103) 

0 E 

and, consequently, 

tin,, (0] [n,, (~) n.(~)] E Ln~(t)J ) 

= E f E 

I '~u(t) 1 Thus, the noise force vector t , ~ u  apparently has the same mean and covariance 
as white noise. Combining Eqs. (97) and (98), one may write 

l?(t) 1 = r",(')l (10S) r c vD(t)J Ln~(t)J 
At first glance, Eq. (105) appears to be equivalent to what one would obtain by 

making Eq. (88) stochastic directly, by putting a white-noise force vector on the 
right-hand side of Eq. (88). Let us explore this further. Let nl(t) and n2(t) be two 
independem Gaussian white noises, each of unity power density. Then 

E _-[~ Im~(OJ t 

t Ln2(t)J 
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Now consider the stochastic differential equation 

12(t) 1 [nl(t)] (108) 
Vr = l ,~( t )J  

The question is, is the process generated by Eq. (108) different from the process 
generated by Eq. (105) ? At first glance, comparing Eq. (101) to Eq. (106) and Eq. (104) 
to Eq. (107), one is tempted to conclude that Eqs. (105) and (108) generate the same 
process. In fact, the two processes are quite different. 

Introduce the two Wiener processes 

wa(t) = ( t  nl(z) aT (109) 
d o 

t 

w~(t) = f n#-) d. (11o) 
0 

The Ito interpretation of Eq. (108) is 

dV(t)] 1 0 ][dWl(t)l 
dfl(t)J = [0 1/V(t)JLdw2(t)] 

(111) 

The forward Kolmogorov equation corresponding to Eq. (111) is 

~ p = l  ~2p 4- 1 ~2p (112) 
~t 2 ~V 2 2V ~ ~fi2 

The two Ito equations (95) and (111) are clearly different. Further, the Kol- 
mogorov equations (96) and (112) do not have the same solution, i.e., the transition 
density for the process described by Eq. (95) is different from the transition density 
for the process described by Eq. (111). If two processes have different transition 
densities, they are different processes. 

Why, then, do Eqs. (105) and (108) appear to be so similar ? The safest answer 
is that the manipulations in Eqs. (101)-(104) are not only nonrigorous, but they are 
probably meaningless. Another answer is contained in the following plausibility 
argument based on the I2 equation alone. 

For the solution V(t) to Eq. (105), we have in mind exactly the same random 
process as the V(t) component of the Ito solution of Eq. (95). Since this is the 
magnitude of the velocity along the flight path, it can never be negative. In fact, one 
can view the [1/V(t)] dt Ito correction term in Eq. (95) as being the force which keeps 
V(t) always nonnegative, since the expected value of the second term in Eq. (95) 
is zero. Thus, nit in Eq. (105) must somehow be correlated with V. 

On the other hand, for the solution V(t) of Eq. (108), we have in mind exactly 
the same random process as the V(t) component of the Ito solution of Eq. (111). But 
this can be written explicitly as 

V(t) = V(O) 4- wl(t ) (113) 

822/z/2-5 
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Since wl(t) has a Gaussian distribution, there is nothing to prevent V(t) here f rom 
being negative at certain times. In fact, as soon as one realizes this, one realizes that 
for this reason, both Eq. (108) and Eq. (1 I) are physically meaningless. 

The main purpose of this example was to illustrate the kind of paradox one can 
create for oneself by trying to make direct calculations involving white noise. In any 
case of doubt in a modeling problem, the safe thing to do is to look at both the Ito 
and the Stratonovich forms of the equations, and make sure they both have a meaning- 
ful interpretation. 

The ultimate objective of setting up a mathematical model is to get the predicted 
output of the model to be an acceptable approximation to the actually observed 
output of the physical system one is trying to model. This is really the only criterion 
by which one can judge the correctness of a model. 

8, C O N C L U S I O N  

In this report, the problem of modeling stochastic nonlinear dynamic systems 
has been discussed. The various mathematical pitfalls and paradoxes that exist were 
illustrated by examples. It was asserted that, once the engineer understands the 
mathematics, he should adopt a phenomenological approach for applying them to 
real-world problems. 
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